Distribution of Prince

		77-32
USN		15MR33
	- 	T A010

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Basic Thermodynamics**

Max. Marks: 80 Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing one full question from each module. 2. Use of thermodynamic data hand book permitted.

Module-1

- (ii) Intensive and extensive Define the following: (i) Open, closed and isolated systems (06 Marks) 1
 - b. With necessary equations, explain the methods of temperature measurements using, (i) two fixed points and (ii) Single fixed point.
 - A platinum wire is used in a resistance thermometer. The resistance was found to be 10 ohm and 16 ohm at ice point and steam point respectively. At Sulpur's boiling point 444.6°C, the resistance was 30 ohm. Find the resistance of wire at 500°C, if the resistance is given by, $R = R_0(1 + aT + bT^2)$ where R_0 , a and b are constant and T is temperature.

OR

- At the beginning of compression stroke in a two-cylinder internal combustion engine, the air is at atmospheric pressure. The compression reduces the volume to 20% of initial volume. The bore and stroke of each cylinder is 0.15 m and 0.25 m compression is done polytropically with an index of compression of 1.2. If 500 compression strokes take place per minute, determine the power absorbed.
 - b. Derive the expressions for, (i) Electrical work and (ii) Shaft work. (06 Marks) (02 Marks)
 - State the sign convention followed for (i) work and (ii) heat transfer.

Module-2

- Write the SFEE for, (i) Steam turbine (ii) Condenser (iii) Centrifugal compressor 3
 - Air flows steadily a the rate of 0.5 kg/s through an air compressor, entering with a velocity of 7 m/s, pressure 1 bar and specific volume 0.95 m³/kg. Corresponding values at the exit are 5 m/s, 7 bar and 0.19 m³/kg. The specific internal energy increases by 90 kJ/kg due to compression. Cooling water absorbs 58 kW heat from the air. Compute the power needed for compression and diameters of outlet and inlet.

OR

- A household fridge interior is maintained at 2°C. Whenever the door is opened, it introduces 420 kJ of heat, making negligible change in interior temperature. The door is opened 20 4 times a day. The refrigerator operates at 25% of the ideal COP. The atmosphere is at 30°C. The cost of electricity is ₹ 4 per unit. What is the monthly bill of fridge? What is the heat rejected to surroundings? (08 Marks)
 - b. State and prove Carnot's theorem by conducting a thought experiment.

Module-3

a. Define (i) Clausius inequality Entropy principle (ii) (iii) Available energy (iv) Unavailable energy and (v) Irreversibility.

b. 2 kg of nitrogen at 1.5 bar, 300 K is compressed polytropically until its volume becomes 20% of original volume. The index of compression is 1.3, and $C_P = 1.04$ KJ/kgK. Calculate the change in entropy due to compression. (06 Marks)

OR

Define the following:

(i) Subcooled liquid (ii) Saturated liquid (iii) Saturated vapour

Superheated vapour and (v) Dryness fraction (iv) (05 Marks)

Steam at 15 bar, 300°C expands isentropically in a turbine to 0.4 bar. Determine the ideal work output of turbine per kg of steam, using Mollies chart.

Steam flows in a pipeline at 15 bar. After expanding to 1 bar in a throttling calorimeter, the temperature is 120°C. Determine the quality of steam in the pipeline. Use steam tables for the properties. (06 Marks)

Module-4

Derive Maxwell's relations.

b. Derive Clausius-Clayperon equation.

(08 Marks)

(08 Marks)

OR

Define the following: (i) ideal gas (ii) enthalpy (iii) specific heat at constant volume, 8 (iv) specific heat at constant pressure (v) perfect gas (vi) Gibb's function.

b. 1 kg of air is compressed reversibly and adiabatically from 80 kPa, 60°C to 4 bar. It is then expanded at constant pressure to the original volume. Sketch the processes on p-v plane. Compute heat transfer and work for the whole path. (10 Marks)

Module-5

a. Derive (i) Dalton's law of partial pressure (ii) Amagat's law of partial volumes. (08 Marks) b. A mixture of ideal gases consists of 3 kg nitrogen and 5 kg carbon dioxide at 300 kPa and 20°C. Calculate partial pressures and equivalent gas constant. (08 Marks)

OR

What are the limitations of ideal gas equation? Discuss how Vander Waal's, Redlich Kwong 10 and Beattie-Bridgemass's equations account for real gas behavior.

b. Using generalized compressibility chart, determine the density of steam in a super critical boiler at 442 bar and 440°C. (06 Marks)